Abstract

A green phosphor, La0.4Ca13.3Eu0.3Mg2Si8O31.6+δN0.4−δ (LaCMSN:Eu2+), was prepared by a solid‐state reaction and an efficient green emission was observed at 506 nm under near‐ultraviolet (NUV) excitation. The structural and optical properties of LaCMSN:Eu2+ phosphors as well as their thermal quenching were investigated. The partial substitution of La3+ and N3− in Ca13.7Eu0.3Mg2Si8O32 led to a considerable enhancement in the peak emission intensity by as much as 194%. This demonstrates not only that the total number of Eu2+ activators increased, but also that the probability of a nonradiative transition between Eu2+ and Eu3+ could be reduced as the increase in concentration of the former is at the expense of the later. The white light‐emitting diode (LED) was fabricated using phosphor with a NUV LED chip. The LED showed warm white light with an excellent color rendering index of 91. The LaCMSN:Eu2+ is thus a potential green‐emitting phosphor for white LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call