Abstract

AbstractThe use of atmospheric pressure (AP) CVD to produce highly developed Transparent Conducting oxides (TCO) for thin film photovoltaic systems has significant potential to reduce manufacturing costs and increase the product scope via in‐line processing compared to off‐line, low pressure techniques. A further advantage of APCVD is the ability control surface morphology via growth parameters, a key factor in controlling the distribution of scattered light at the TCO/absorber interface. The nano‐scale features may be further optimised via post growth etching, for example, to round sharp vertices or induce or exaggerate texture in a film material that is intrinsically smooth. This is normally achieved via low pressure plasma treatments or wet chemical processes, hence the presented novel AP plasma approach here offers reduced capital costs combined with ease of scalability and process integration. In this work we describe the multi‐scale manipulation of an APCVD grown ZnO via surface morphological modification, achieved by the application of an atmospheric pressure plasma etch system. The modified surfaces are evaluated for optical and morphological properties. Initial research has shown that under the correct plasma etch conditions, optical haze can be increased by as much as 20%, with the crucial additional ability to also tailor the film surface features. The use of audio frequency and sub‐microsecond pulsed plasmas for etching are compared in terms of activity and control. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.