Abstract

The integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO2 nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS2 layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS2 were conformally grown on the NP-patterned SiO2/Si substrates without notable strain. The photoluminescence and Raman intensities of the MoS2 layers on the SiO2 NPs were larger than those observed from a flat SiO2 surface. For 100 nm-SiO2/Si wafers, the 50 nm-NP patterning enabled improved absorption in the MoS2 layers over the whole visible wavelength range. Optical simulations showed that a strong electric-field could be formed at the NP surface, which led to the enhanced absorption in the MoS2 layers. These results suggest a versatile strategy to realize high-efficiency TMDC-based optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.