Abstract

Functional bacterial communities (FBC) have members of different taxonomic biochemical groups, such as N2-fixation, nitrification and denitrification. This study explored the mechanism of the FBC from an upflow three-dimensional biofilm electrode reactor on enhancing the nitrogen removal efficiencies in a Sesuvium potulacastum (S. potulacastum) constructed wetland. There were high abundances of denitrifying bacteria detected in the FBC, and they had potential metabolic processes for nitrogen reduction. In the constructed wetland, cellular nitrogen compounds of S. potulacastum were enriched by overexpressed differentially expressed genes (DEGs), and the napA, narG, nirK, nirS, qnorB, and NosZ genes related to the denitrification process had more copies under FBC treatment. Nitrogen metabolism in root bacterial communities (RBCs) was activated in the FBC group compared with the control group without FBC. Finally, these FBCs improved the removal efficiencies of DTN (dissolved total nitrogen), NO3¯­N, NO2¯­N, and NH4+-N by 84.37 %, 87.42 %, 67.51 %, and 92.57 %, respectively, and their final concentrations met the emission standards of China. These findings indicate that adding FBC into S. potulacastum-constructed wetlands would result in high nitrogen removal efficiencies from wastewater and have large potential applications in further water treatment technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.