Abstract

The vasoactivity of circulating cross-linked hemoglobin is consistent with the acellular protein penetrating the endothelial lining of blood vessels where hemoglobin can bind nitric oxide, the signal for relaxation of the muscles that surround blood vessels. In an important contrast, derivatives of bis-tetramers that are produced from hemoglobin by chemical coupling do not cause vasoconstriction in animal models. Presumably, they are unable to enter the endothelia where hemoglobin tetramers bind to nitric oxide. In addition, hemoglobin bis-tetramers can produce nitric oxide in circulation through their intrinsic nitrite reductase activity. Examination of this activity for hemoglobin-derived bis-tetramers that are acetylated at lysyl amino groups in their α subunits reveals enhanced activity (k = 2.21 M(-1) s(-1)) compared to that of nonacetylated bis-tetramers (k = 0.70 M(-1) s(-1)). Plots of nitrite reductase activities as a function of the corresponding oxygen affinities of certain allosteric-state-stabilized derivatives reveal a significant correlation, providing a basis for interpretation of the correlated functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.