Abstract

Deoxygenated hemoglobin (Hb) is a nitrite reductase that reduces naturally occurring nitrite to nitric oxide (NO), supplying physiological relevant NO under hypoxic conditions. The nitrite reductase activity is modulated by the allosteric equilibrium between the R and T structures of Hb that also determines oxygen affinity. In the present study we investigated nitrite reductase activity and O2 affinity in Hbs from ten different vertebrate species under identical conditions to disclose interspecific variations and allow an extended test for a correlation between the rate constant for nitrite reduction and O2 affinity. We also tested plastic changes in Hb properties via addition of T-structure-stabilizing organic phosphates (ATP and GTP). The decay in deoxyHb during its reaction with nitrite was exponential-like in ectotherms (Atlantic hagfish, carp, crucian carp, brown trout, rainbow trout, cane toad, Indian python and red-eared slider turtle), while it was sigmoid in mammals (harbor porpoise and rabbit). Typically, hypoxia-tolerant species showed a faster reaction than intolerant species. Addition of ATP and GTP decreased O2 affinity and slowed the rate of nitrite reduction in a concentration-dependent manner. The initial second order rate constant of the deoxyHb-mediated nitrite reduction showed a strong curvilinear correlation with oxygen affinity among all ectothermic vertebrates, and the relationship also applied to plastic variations of Hb properties via organic phosphates. The relationship predicts high nitrite reductase activity in hypoxic tolerant species with high Hb-O2 affinity and reveals that the decrease in erythrocyte ATP and/or GTP during acclimation to hypoxia in ectotherms increases the erythrocyte NO generating capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.