Abstract
Surfactants can increase the solubility of non-polar compounds, and have been applied in areas such as soil washing and treatment of non-aqueous phase liquids (NAPLs). This investigation explored the feasibility of removing vapor phase polycyclic aromatic hydrocarbon (PAH) from gases using an anionic surfactant. The solubility of vapor phase naphthalene was measured herein using gas chromatograph (GC) with a photon ionization detector (PID). The measurement results indicated that surfactant molecules were not favorable to micelle formation when temperatures increased from 25°C to 50°C. Regardless of whether solutions were quiescent or agitated, equilibrium naphthalene apparent solubility increased linearly with surfactant concentrations exceeding critical micelle concentration (CMC). The pH effects on naphthalene apparent solubility were small. Agitation increased naphthalene apparent solubility and lumped mass transfer coefficients. Furthermore, lumped mass transfer coefficients decreased with increasing surfactant concentration owing to increase in interfacial resistance and viscosity and decreased spherical micelle diffusion coefficients. Finally, the net absorption rate increased because the solubilization effects of micelles exceeded the reduction effects of mass transfer coefficient above the CMC. The enhanced naphthalene apparent solubility from the addition of surfactant can be expressed by an enrichment factor (EF). The EF value of naphthalene for the surfactant solution at 0.1 M with agitation at 270 rpm relative to quiescent water could reach 18.6. This work confirms that anionic surfactant can improve the removal efficiency of hydrophobic organic compound (HOC) from the gas phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.