Abstract

Various standoff sensing techniques employing optical spectroscopy have been developed to address challenges in safely identifying trace amounts of explosives at a distance. A flexible anodic aluminum oxide (AAO) microcantilever and a high-power quantum cascade laser utilized as the infrared (IR) source are used for standoff IR reflection-absorption spectroscopy to detect explosive residues on a metal surface. Standoff sensing of trinitrotoluene (TNT) is demonstrated by exploiting the high thermomechanical sensitivity of a bimetallic AAO microcantilever. Moreover, sputtering gold onto the fabricated AAO nanowells generates a strong scattering and absorption of IR light in the wavelength range of 5.18 µm to 5.85 µm resulting in enhanced nanoplasmonic heating. Utilizing the IR absorption enhancement in this wavelength range, the plasmonic AAO cantilever could detect TNT molecules 7 times better than could the bimetallic AAO cantilever.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.