Abstract

This paper introduces several strategies to deal with pivot blocks in multi-level block incomplete LU factorization (BILUM) preconditioning techniques. These techniques are aimed at increasing the robustness and controlling the amount of fill-ins of BILUM for solving large sparse linear systems when large-size blocks are used to form block-independent set. Techniques proposed in this paper include double-dropping strategies, approximate singular-value decomposition, variable size blocks and use of an arrowhead block submatrix. We point out the advantages and disadvantages of these strategies and discuss their efficient implementations. Numerical experiments are conducted to show the usefulness of the new techniques in dealing with hard-to-solve problems arising from computational fluid dynamics. In addition, we discuss the relation between multi-level ILU preconditioning methods and algebraic multi-level methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.