Abstract
Miller plateau characteristics of a 4H-SiC insulated-gate bipolar transistor (IGBT) is investigated during a gate voltage turn-on under the presence of interface carrier traps at the MOSFET gate oxide. The plateau, which is observed in the device gate-emitter voltage, increased with respect to both height and length. The plateau height is mainly determined by the density increase of trap states, which also causes slow charging of the gate capacitance in the overlap region that results in a longer plateau length. The shallow trap states contribute mainly to the plateau increase. It is observed that the switching loss at turn-on can increase by more than 60% due mainly to the carrier traps at the shallow trap states.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have