Abstract

Micro light-emitting diode (microLED) structures were modeled and validated with fabricated devices to investigate p-type GaN (pGaN) contact size dependence on power output efficiency. Two schemes were investigated: a constant 10 μm diameter pGaN contact and varying microLED sizes and a constant 10 μm diameter microLED with varying contact sizes. Modeled devices show a 17% improvement in output power by increasing the microLED die size. Fabricated devices followed the same trend with a 70% improvement in power output. Modeled microLED devices of a constant size and varying inner contact sizes show optimized power output at different current densities for various contact sizes. In particular, lower current densities show optimized output for smaller pGaN contacts and trend towards larger contacts for higher current densities in a balance between undesirable efficiency losses at high-current injection and preventing surface recombination losses. We show that for all device geometries, it is preferential to shrink the pGaN contact to maximize efficiency by suppressing surface recombination losses and further improvements should be carefully considered to optimize efficiency for a desired operational brightness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.