Abstract

Non-precious NiMoO4 nanorods with carbon and graphene have been designed for methanol oxidation via one pot hydrothermal method. The physicochemical and electrocatalytic features of these catalysts are characterized. Among the three catalysts, carbon modified NiMoO4 shows an enhanced catalytic activity in terms of current density, onset potential, cyclic stability and high tolerance to intermediate towards methanol electro-oxidation. Moreover, the NiMoO4/C catalyst delivers a current density of 49 mA cm−2 at low onset potential of 0.45 V (vs. Hg/HgO) in 1 M KOH and 2.0 M methanol electrolyte. This greater electrocatalytic activity is attributed to the unique 1D microstructure of NiMoO4 nanorods with well distributed carbonaceous material, which enhances the efficient transport of electron/ion kinetics at the electrode and electrolyte interfaces. From this observation, it is concluded that the carbon modified NiMoO4 nanorods could be a promising alternate non-noble electrocatalysts for direct methanol fuel cell (DMFC) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.