Abstract

Novel ultrafine nanoporous Pt–Cu alloy with a Pt:Cu stoichiometric ratio of 3:1 (np-Pt3Cu) has been prepared by mechanical alloying and subsequent two-step chemical dealloying. The obtained np-Pt3Cu has uniform and bicontinuous ligament(metal)-channel(void) structure with the ligament size of 3.3 ± 0.7 nm. To explore its potential application in energy conversion reactions, the np-Pt3Cu alloy has been examined as electrocatalyst for the operating reactions in direct methanol fuel cells (DMFCs). Compared with the commercial JM Pt/C, a benchmark catalyst extensively used in fuel cell research, the np-Pt3Cu alloy demonstrates better performance in both the methanol electro-oxidation and oxygen reduction reactions in acidic medium. Theoretical calculations reveal that the electronic structure of Pt has been modified with the shift of Pt d-band center due to alloying with Cu, which can decrease CO poisoning and enhance the methanol oxidation and oxygen reduction reaction activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call