Abstract
Black phosphorus (BP) and BP modified by hydrogen peroxide (MBP) were used as accelerants to enhance CH4 production and CO2 reduction in microbial electrolysis cells (MECs) coupled with anaerobic co-digestion systems (MEC-AcoD). The MEC-AcoD group with a voltage of 0.6 V and 0.03 wt.% of MBP accelerant (MEC0.6MBP0.03) had the largest CH4 yield (242.1 mL/g VS) and the smallest carbon dioxide yield (97.6 mL/g VS) compared with the control group (141.2 mL/g VS, 146.9 mL/g VS). The digestates that used MEC0.6MBP0.03 exhibited superior thermal stability (46.2 %) and total nutrient contents (44.5 g/kg). These improvements may be attributed to the superior electron exchange capacity and physicochemical properties of MBP. Herein, we propose a strategy to understand enhanced CH4 production and CO2 reduction in anaerobic co-digestion and MEC-AcoD systems using MBP accelerants. Notably, combining MBP and MEC could effectively promote anaerobic co-digestion performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have