Abstract
To improve the tensile properties and degradability of poly(butylene succinate) (PBS) for biomedical usage, biodegradable polymer blends have been developed. A series of PBS and poly(lactic acid) (PLA) blends were prepared, and their degradation behaviors in simulated body fluid for 16 months were investigated based on morphology, tensile test, weight analysis, and molecular weight. The results showed that the incorporation of PLA into PBS increased the initial tensile strength to some extent, and the blends lost their tensile properties earlier than their parent polymers with the proceeding of hydrolysis. Both blends and parent polymers went through a plateau and subsequent rise stage in mass loss and water absorption, but the blends hydrolyzed faster than the parent polymers. The molecular weight variations also demonstrated faster hydrolysis of the blends. Moreover, both blends and their parent polymers underwent a slow-to-fast transition in their hydrolysis rates. When the Mn of PBS and PLA reached 4.0 × 104 and 9.0 × 104, the hydrolysis of parent polymers and blends began to accelerate, which is the start of auto-acceleration. The blends hydrolyzed faster in both stages. The interface between the components initiated accelerating hydrolysis in the first stage, and the reciprocal auto-acceleration effect resulted in faster hydrolysis of the blends in the second stage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have