Abstract

This study reports on the effect of Gd concentrations on the properties of Gd-doped ZnO films. The films were prepared using co-sputtering method at room temperature. Characterization tools such as X-ray diffraction (XRD), atomic force microscopy (AFM), and vibrating sample magnetometer (VSM) were used to analyze the properties of the prepared films. XRD results observed that all the films are well crystalline and designated to the hexagonal wurtzite structure of ZnO with no secondary phases, which confirmed the successful of doping the Gd into ZnO. Topography analysis from AFM discovered the increase of Gd concentrations of Gd-doped ZnO films leads to the increase in grain size and rougher surface of the films. The magnetization of the films effectively depends on the Gd concentrations, which the diamagnetic behavior changed to ferromagnetic behavior upon Gd doping. A film with higher Gd doping concentration is more effective than lower Gd doping in terms of saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr). These findings revealed that optimizing the Gd concentration is very crucial in enhancing the magnetic properties of Gd-doped ZnO films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call