Abstract

Macroscopic quantum tunneling (MQT) in an intrinsic Josephson junction (IJJ) stack of Bi1.9Pb0.1Sr1.39La0.63CuO6+δ (BiPb2201) has been investigated. For the first switch, from superconducting to the first resistive branch in current–voltage characteristics, the crossover between MQT and thermal activation (TA) takes place at 0.6 K. On the other hand, for the second switch, the MQT-TA crossover temperature is increased to 2.0 K. This result is interpreted as follows: the MQT rate of the second switch is enhanced by the charge coupling between adjacent IJJs as well as in Bi2Sr2CaCu2O8+δ. We consider that the enhancement of the MQT rate is a common feature among bismuth-cuprates with single and double CuO2 layers in their crystal structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call