Abstract

It is still a formidable challenge to ameliorate the low-frequency electromagnetic property of conventional microwave-absorbing materials, which may be conquered by the coexistence of both strong dielectric and magnetic loss ability in low-frequency range and the perfect balance between complex permittivity and permeability with the help of structural design. Herein, by virtue of appropriate composition and structure of Co3[HCOO]6·dimethylformamide parallelepipeds, one-dimensional spongelike metallic Co can be directly synthesized for the first time with strong magnetic loss in the low-frequency range. Furthermore, attenuation ability and impedance matching condition have been improved through the construction of interfacial structures between inner cobalt and surface carbon. With the structure of carbon changed from fragments to vertically aligned nanoflakes and eventually to a thick layer with extra fragments, the dielectric loss would be continuously strengthened, while the magnetic loss maintains well, followed by a remarkable decline. A perfect balance between dielectric and magnetic loss has been achieved by sample S-Co/C-0.3 with minimum reflection loss value around -20 dB and effective absorption frequency range about 3.84 GHz in the C band. Excellent microwave absorption performance can also be realized in X and Ku bands. In addition, as-prepared Co and Co/C composites can also be potentially applied in electromagnetic shielding. The findings may pave the way for the manufacture of metal-based metal-organic framework derivatives and the design of lightweight low-frequency electromagnetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call