Abstract

Summary This paper proposes an enhancement of the low-voltage ride-through (LVRT) capability of multilevel flying capacitors inverter using an improved model predictive control (MPC). The proposed solution is a multiobjective control strategy ensuring simultaneous capacitors' voltages balancing and grid current injection with reduced total harmonics distortion (THD) and unity power factor even under severe voltage sags. The proposed MPC technique makes use of a multioptimization solution for the common problem of weight dissimilarity of the control objectives. The first optimization is achieved by the inclusion of the state variables normalization within the cost function computation. This will provide to the proposed MPC technique more robustness with the ability to take into consideration external disturbances (grid voltage sag) while ensuring the meeting of the state variables constraints. The second one is achieved through accurately tuning the weighting factor based on minimizing the grid current total harmonics distortion and the maximal errors on the capacitors' voltages. Theoretical analysis and simulation results are presented to prove that the presented solution guarantees continuous and smooth power transfer to the grid even under severe voltage sags. The obtained results are validated on a 1-kW experimental prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.