Abstract

A magnetic FenUiO-66 adsorbent was created to achieve high phosphate adsorption capacity. The incorporation of Fe3O4 facilitated the precipitation and growth of UiO-66 during crystallization, resulting in a shift towards a multilayer heterogeneous distribution of adsorption sites. The increased Fe3O4 content notably enhanced the magnetic properties of FenUiO-66, while negligibly affecting its adsorption performance. The Fe1.5UiO-66 demonstrated exceptional phosphate adsorption capacity (136.54 mg/g), outstanding selectivity, and sustained reusability, with an 80% removal efficiency after nine cycles of treating actual water. The mechanism of phosphate adsorption by FenUiO-66 involved electrostatic attraction, ligand exchange, and linker exchange. Notably, while linker exchange significantly contributed to high adsorption capacity, it resulted in irreversible damage to the FenUiO-66 crystal. These unequivocal findings will serve as a solid foundation for further research and underline the critical role of linkers in the process of phosphate adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.