Abstract
We previously demonstrated that the deletion of phospholipase C-related catalytically inactive protein-1/2 (PRIP-1/2) enhances the desensitization of GABAA receptors (GABAARs), while it facilitates their resensitization at the offset of GABA puff, causing a hump-like tail current (tail-I) in layer 3 (L3) pyramidal cells (PCs) of the barrel cortex. In the present study, we investigated whether inhibitory synaptic transmission in L3 PCs in the barrel cortex is altered in the PRIP-1/2 double-knockout (PRIP-DKO) mice, and if so, how the interaction between excitation and inhibition is subsequently modified. PRIP-1/2 deletion resulted in the prolongation of the decay phase of inhibitory postsynaptic currents/potentials (IPSCs/IPSPs) in L3 PCs evoked by stimulation of L3, leaving the overall features of miniature IPSCs unchanged. An optical imaging revealed that the spatiotemporal profile of a horizontal excitation spread across columns in L2/3 caused by L4 stimulation in the barrel cortex was more restricted in PRIP-DKO mice compared to the wild type, while those obtained in the presence of bicuculline were almost identical between the two genotypes. These findings suggest that PRIP-1/2 deletion enhances the lateral inhibition by prolonging inhibitory synaptic actions to limit the intercolumnar integration in the barrel cortex. Considering the present findings together with our previous study including a mathematical simulation, the prolongation of inhibitory synaptic actions is likely to result from an enhancement of desensitization followed by an enhanced resensitization in GABAARs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.