Abstract

The photovoltaic effect in traditional p-n junctions-where a p-type material (with an excess of holes) abuts an n-type material (with an excess of electrons)-involves the light-induced creation of electron-hole pairs and their subsequent separation, generating a current. This photovoltaic effect is particularly important for environmentally benign energy harvesting, and its efficiency has been increased dramatically, almost reaching the theoretical limit1. Further progress is anticipated by making use of the bulk photovoltaic effect (BPVE)2, which does not require a junction and occurs only in crystals with broken inversion symmetry3. However, the practical implementation of the BPVE is hampered by its low efficiency in existing materials4-10. Semiconductors with reduced dimensionality2 or a smaller bandgap4,5 have been suggested to be more efficient. Transition-metal dichalcogenides (TMDs) are exemplary small-bandgap, two-dimensional semiconductors11,12 in which various effects have been observed by breaking the inversion symmetry inherent in their bulk crystals13-15, but the BPVE has not been investigated. Here we report the discovery of the BPVE in devices based on tungsten disulfide, a member of the TMD family. We find that systematically reducing the crystal symmetry beyond mere broken inversion symmetry-moving from a two-dimensional monolayer to a nanotube with polar properties-greatly enhances the BPVE. The photocurrent density thus generated is orders of magnitude larger than that of other BPVE materials. Our findings highlight not only the potential of TMD-based nanomaterials, but alsomore generally the importance of crystal symmetry reduction in enhancing the efficiency of converting solar to electric power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.