Abstract

In rabbit arteries endogenous production of cAMP facilitates electrotonic signalling via gap junctions, thus explaining the ability of P-site inhibitors of adenylyl cyclase to attenuate EDHF-type responses. In the present study, we show that a lipophilic phosphoramidate pronucleotide derivative of dideoxyadenosine, 2',3'-ddA-PMAPh, exhibits enhanced activity as an inhibitor of EDHF-type smooth muscle hyperpolarizations induced by acetylcholine (ACh) compared to the parent nucleoside 2',3'-ddA, and that the effects of both compounds can be reversed by the cAMP phosphodiesterase inhibitor IBMX. Neither 2',3'-ddA nor 2',3'-ddA-PMAPh depress ACh-evoked endothelial hyperpolarization directly. Modifications in the lipophilicity of dideoxyadenosine and its direct intracellular delivery as a mononucleotide may thus enhance the ability to inhibit adenylyl cyclase and depress electrotonic signalling via myoendothelial gap junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call