Abstract

The aim of this study was to investigate a novel and convenient method of chemical treatment to modify the hydrophilicity of titanium surfaces. Sand‐blasted and acid‐etched (SLA) titanium surfaces and machined titanium surfaces were treated with sodium bicarbonate (NaHCO3) solution. The wetting behavior of both kinds of surfaces was measured by water contact angle (WCA) test. The surface microstructure was assessed with scanning electron microscopy (SEM) and three‐dimensional (3D) optical microscopy. The elemental compositions of the surfaces were analyzed by X‐ray photoelectron spectroscopy (XPS). The protein adsorption analysis was performed with fibronectin. Results showed that, after 1 M NaHCO3 treatment, the hydrophilicity of both SLA and machined surfaces was enhanced. No significant microstructural change presented on titanium surfaces after NaHCO3 treatment. The deprotonation and ion exchange activities might cause the enhanced hydrophilicity of titanium surfaces. The increased protein adsorption of NaHCO3‐treated SLA surfaces might indicate their improved tissue‐integration in clinical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.