Abstract

The present investigation describes the synergistic role of Li4(BH4)(NH2)3 and ZrFe2 in the hydrogen storage behaviour of a Li-Mg-N-H hydride system. The onset desorption temperature of ZrFe2-catalysed Mg(NH2)2-LiH-Li4(BH4)(NH2)3 is ∼122 °C, which is 83 °C, 63 °C, and 28 °C lower than that of thermally treated 2LiNH2-1MgH2, 2LiNH2-1MgH2-4 wt%ZrFe2, and 2LiNH2-1MgH2-0.1LiBH4 composites, respectively. Native Mg(NH2)2-LiH-Li4(BH4)(NH2)3 absorbed only 2.78 wt% of H2 within 30 min. On the other hand, the ZrFe2-catalysed Mg(NH2)2-LiH-Li4(BH4)(NH2)3 sample absorbed 3.70 wt% of hydrogen within 30 min and 5 wt% of H2 in 6 h at 180 °C and 7 MPa H2 pressure. Mg(NH2)2-LiH-Li4(BH4)(NH2)3 catalyzed with ZrFe2 shows negligible degradation of the storage capacity even after repeated cycles of de/rehydrogenation. The effect of ZrFe2 and Li4(BH4)(NH2)3 on a Mg(NH2)2/LiH composite has been described and discussed with the help of structural (X-ray diffraction), microstructural (electron microscopy), and vibrational modes of molecules through FTIR studies. The present results suggest that an optimum catalysis may originate from the synergistic action of an in situ formed quaternary hydride (Li4(BH4)(NH2)3) and an intermetallic-like ZrFe2, which acts as a pulverizer cum catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.