Abstract

The dielectric property relations of a series of BaTiO3–polymer composites with a uniquely high-volume fraction of ceramic [(1 − x)BaTiO3–x polytetrafluoroethylene (PTFE), with volume fractions x = 0.025, 0.05, 0.1, and 0.2] are studied. Such high-volume fraction of the BaTiO3 phase is achieved by using the cold sintering process, as it enables a single-step densification of oxides at an extremely low temperature; typically, the volume fractions from other processing methods are limited to ceramic filler volume fractions of ∼0.6. Microstructural and resistivity analyses suggest that the optimal range of the polymer content to effectively enhance the functions is x = 0.05, as higher volume fractions of the polymer hinder the densification of the ceramic. The composite exhibits improved properties such as lower loss tangent, higher resistivity, and high permittivity that vary systematically with x following an empirical mixing law. Here, we consider the composite mixing law trends and the changes to properties, which indicate that size effects are also being induced in the dielectric response, including shift of Tc, broadening of transition, and reduction of permittivity with respect to volume fraction of the PTFE. Our findings provide a new and simple strategy for the fabrication of ceramic–polymer composites with extremely high relative permittivities and resistivities, and these observations all point to a route that can allow us to engineer new types of advanced dielectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.