Abstract

High permittivity and low loss tangent polymer matrix composites containing a low loading of filler are desirable for practical applications in modern electronic devices. In this work, greatly improved dielectric properties of poly(vinylidene fluoride) (PVDF) were accomplished by incorporating high–permittivity Na1/3Ca1/3Bi1/3Cu3Ti4O12 (NCBCTO) ceramic particles with sizes of ~0.5–1.5 μm coupled with ~1.0–2.0 μm diameter core–shell Ni@NiO particles. Phase composition, crystal structures, morphology, microstructure, and dielectric properties of NCBCTO–Ni Ni@NiO/PVDF composites were investigated. A nonpolar α–phase and polar β– and γ–phases were detected in the PVDF matrix and NCBCTO–Ni/PVDF composites. Random dispersions of small clusters of NCBCTO and Ni particles were observed in the PVDF polymer matrix. Significantly enhanced dielectric permittivity, ≈279, which was higher than that of pure PVDF polymer by a factor of ≈27, was achieved. Surprisingly, the dielectric loss tangent was suppressed to a very low value of ≈0.07 at 1 kHz. The dielectric properties of the NCBCTO-Ni@NiO/PVDF composites are discussed based on the interfacial polarization at the internal interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.