Abstract

This experimental study investigates the heat transfers in three side-opened and bottom-sealed rectangular channels with two opposite walls roughened by 90° staggered ribs, which simulate the enhanced cooling passages in the fin-type heat sinks of electronic chipsets. The various degrees of interactive effects due to the surface ribs, side-profile leakage flows and streamwise weakened coolant flow are functionally related with Reynolds number ( Re) and channel length-to-gap ratio ( L/ B), which unravel the considerable impacts on local and spatially averaged heat transfers over the rib-roughened fin surfaces. A selection of detailed heat transfer measurements over the rib-roughened fin surfaces illustrates the manner by which the isolated and interactive influences of Re and L/ B-ratio affect the local and spatially averaged heat transfers. Relative to the heat transfer results acquired from the smooth-walled test channels, the augmentations of spatially averaged heat transfers generated by the present surface ribs are in the range of 140–200% of the flat fin reference levels. In conformity with the experimentally revealed heat transfer physics, a regression-type analysis is performed to develop the correlation of spatially-averaged Nusselt number over rib-roughened fin surface, which permits the individual and interactive effect of Re and L/ B on heat transfer to be evaluated. A criterion for selecting the optimal length-to-gap ratio of a fin channel, which provides the maximum convective heat flux from the rib-roughened fin surface, is formulated as an engineering tool to assist the design activity for the cooling device of electronic chipsets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call