Abstract
The cross-section of carbon fibers (CFs) possessed radial heterostructure, which restricted its mechanical properties. In this paper, heating and γ-irradiation were integrated during PAN fibers stabilization process to improve the radial structure of CFs. The synergy between irradiation and heating during stabilization caused the decrease of ID/IG, increase of crystal size, and reduction of pore fractal dimension in whole CFs. Through Raman spectra along fibers cross-section, a radial heterogeneity was found during the whole carbonization process. The combination of γ-irradiation and heating reduced the ID/IG of core part more significantly compared to the skin part of CFs, which weakened radial heterogeneity of CFs. At the same time, it significantly enhanced the tensile strength of CFs. Subsequently, a hierarchy model with three zones containing outer-surface, sub-surface and core parts was presented to explain the evolution of tensile strength for CFs. The γ-irradiation during stabilization enhanced the structure of each part in CFs by generating more cross-linked structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.