Abstract

The Antarctic Peninsula Ice Sheet is currently experiencing sustained and accelerating loss of ice. Determining when these changes were initiated and identifying the main drivers is hampered by the short instrumental record (1992 to present). Here we present a 6,250 year record of glacial discharge based on the oxygen isotope composition of diatoms (δ18Odiatom) from a marine core located at the north-eastern tip of the Antarctic Peninsula. We find that glacial discharge - sourced primarily from ice shelf and iceberg melting along the eastern Antarctic Peninsula – remained largely stable between ~6,250 to 1,620 cal. yr BP, with a slight increase in variability until ~720 cal. yr. BP. An increasing trend in glacial discharge occurs after 550 cal. yr BP (A.D. 1400), reaching levels unprecedented during the past 6,250 years after 244 cal. yr BP (A.D. 1706). A marked acceleration in the rate of glacial discharge is also observed in the early part of twentieth century (after A.D. 1912). Enhanced glacial discharge, particularly after the 1700s is linked to a positive Southern Annular Mode (SAM). We argue that a positive SAM drove stronger westerly winds, atmospheric warming and surface ablation on the eastern Antarctic Peninsula whilst simultaneously entraining more warm water into the Weddell Gyre, potentially increasing melting on the undersides of ice shelves. A possible implication of our data is that ice shelves in this region have been thinning for at least ~300 years, potentially predisposing them to collapse under intensified anthropogenic warming.

Highlights

  • The Al concentrations were below 1%, and typically below 0.2%, indicating a high degree of diatom purity

  • Sample purity was assessed on a sub-set of samples prior to analysis using X-Ray Fluorescence (XRF) (Table S2); an aluminium concentration below 1% is a useful threshold for assessing the degree of terrigenous contamination within the diatom residue[69]

  • To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Read more

Summary

Weddell Sea

Temperatures and melting is well-quantified for this high altitude (1,524 m) ice core site, there is little corresponding data on how the combined atmospheric and ocean temperature changes have driven retreat of glaciers and ice shelves at or close to sea level, where most of the recent mass loss has occurred[19]. One attempt to understand the thinning history of marine-terminating glaciers on the western AP analyzed the oxygen isotope composition of marine diatoms (δ18Odiatom) in a sediment core from the near-coastal Palmer Deep[20] (Fig. 1c) In this environment δ18Odiatom provides a proxy for glacier discharge[20,21,22], derived from melting of floating glaciers/ice shelves and calved icebergs. This record revealed centennial to millennial-scale variations in glacial discharge during the past ~11,000 years with a trend to increasing discharge sometime during the late Holocene. Our record provides a unique opportunity to assess the past sensitivity of ice shelves and glaciers in the NW Weddell Sea to known changes in climate

Results
Materials and Methods
Author Contributions
Additional Information
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call