Abstract

This paper discusses nanomagnetic structures enabling the manipulation of propagating spin waves. We address in particular how domain walls, or more generally speaking inhomogeneous spin configurations, enhance the control of spin-wave transmission and thereby the functionality of magnonic devices. Three different microscopic mechanisms are outlined, considering an interference device, a spin-wave bus and a magnonic crystal. Inhomogeneous spin configurations are argued to shift the spin-wave phase, guide spin waves in nanochannels and allow for reprogrammable spin-wave band structures in periodic nanostructures, respectively. Such devices and functionalities are relevant for further developments in magnonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.