Abstract
The isolation of white blood cells (WBCs) from whole blood constitutes a pivotal process for immunological studies, diagnosis of hematologic disorders, and the facilitation of immunotherapy. Despite the ubiquity of density gradient centrifugation in WBC isolation, its influence on WBC functionality remains inadequately understood. This research employs holotomography to explore the effects of two distinct WBC separation techniques, namely conventional centrifugation and microfluidic separation, on the functionality of the isolated cells. We utilize three-dimensional refractive index distribution and time-lapse dynamics to analyze individual WBCs in-depth, focusing on their morphology, motility, and phagocytic capabilities. Our observations highlight that centrifugal processes negatively impact WBC motility and phagocytic capacity, whereas microfluidic separation yields a more favorable outcome in preserving WBC functionality. These findings emphasize the potential of microfluidic separation techniques as a viable alternative to traditional centrifugation for WBC isolation, potentially enabling more precise analyses in immunology research and improving the accuracy of hematologic disorder diagnoses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have