Abstract

ABSTRACTIn this paper, high temperature (>1400°C) thermal oxidation has been applied, for the first time, to 4H-SiC PiN diodes with thick (110 μm) drift regions, for the purpose of increasing the carrier lifetime in the semiconductor. PiN diodes were fabricated using 4H-SiC material that had undergone thermal oxidation performed at 1400°C, 1500°C and 1600°C, then were electrically characterized. Forward current-voltage (I-V) measurements showed that thermally oxidized PiN diodes exhibited considerably improved electrical characteristics, with devices oxidized at 1500°C having a forward voltage drop (VF) of 4.15 V and a differential on-resistance (Ron,diff) of 8.9 mΩ-cm2 at 100 A/cm2 and 25°C. Compared to typical control sample PiN diode characteristics, this equated to an improvement of 8% and 23% for VF and Ron,diff, respectively. From analysis of the reverse recovery characteristics, the carrier lifetime of the PiN diodes oxidized at 1500°C was found to be 1.05 μs, which was an improvement of around 30% compared to the control sample PiN diodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call