Abstract
In this paper, the application of a novel combined high temperature thermal oxidation and annealing process to mesa-isolated epitaxial-anode 4H-SiC PiN diodes with thick (110 μm) drift regions is presented, the aim of which was to increase the carrier lifetime in the 4H-SiC. Diodes were fabricated using 4H-SiC material having undergone this process, which consisted of a thermal oxidation in dry pure O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> at 1550°C followed by an argon anneal at the same temperature. Forward current-voltage characterization showed that the oxidised/annealed samples typically showed around 15% lower forward voltage drop and around 40% lower differential on-resistance (at 100 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and 25°C) compared to control sample PiN diodes, whilst reverse recovery tests indicated a carrier lifetime increase also of around 40%. These findings illustrate that the use of this process is a highly effective and efficient way of improving the electrical characteristics of high voltage 4H-SiC bipolar devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.