Abstract

Enhancing the critical-current density of YBCO films is essential to gain a deeper understanding of the vortex pinning mechanisms and enable commercial applications of high-temperature superconductivity. Combined BaCeO3 and Y2O3 nanoparticles have been achieved to be co-doped in YBa2Cu3O7-x (YBCO) films by metalorganic deposition using trifluoroacetates (TFA-MOD). The formation of integrated nanoparticles increases the critical current density (Jc) of Y2O3/BaCeO3 doped-YBCO films while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. YBCO film containing BaCeO3 and Y2O3 showed Tc value of 91 K and Jc value of 5 MA/cm2 at self-field (0 T, 77 K). The strongly enhanced flux pinning over a wide range of magnetic field may be attributed to the combined BaCeO3 and Y2O3 created by optimized TFA-MOD conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.