Abstract
Crystal growth process of YBa2Cu3O7-X (YBCO) films with BaZrO3 (BZO) pinning centers were investigated to enhance JC property by controlling microstructure of the films. The YBCO films were fabricated by a metal organic deposition (MOD) method using solutions with trifluoroacetates (TFA) and Zr-salts. Quenched films were prepared by cooling them rapidly during crystallization process and crystallized phases were identified by an X-ray diffraction (XRD) measurement. It is indicating that BZO forms at lower temperature than that of YBCO formation and that BZO and BaF2 are crystallized at the similar temperature range around 700°C. Then, we kept the heating temperature which is under 600°C before crystallization temperature of YBCO and investigated the effect of temperature keeping on film growth. In the film kept for more than 3 hours, BZO peak was detected by XRD measurement. However, BZO particles were not observed in the film even kept for 9 hours by transmission electron microscopy (TEM) and energy dispersive X-ray (EDS) analyses. It is indicated that growth rate of BZO is slow at 600°C. On the other hand, smaller YBCO particles and decreasing of surface roughness (Ra) were observed for the film which were kept at 600°C for 3 hours and then crystallized. This result suggests the density of YBCO film is higher than that for YBCO without that process. In summary, it can be considered that YBCO film density become high by temperature keeping process below 600°C before YBCO crystallization and that size of BZO particles are determined by heat treatment at the temperature of above 600°C
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.