Abstract
Lignin is an abundant phenolic polymer produced vastly in pulping processes that could be further valorized. In this work, anionic (AKLs) and cationic (CKLs) lignin-based polymers were made by polymerizing kraft lignin (KL) with acrylic acid (AA) or [2-(methacryloyloxy) ethyl] trimethyl-ammonium chloride (METAC), respectively. In the polymerization reactions, various molar ratios of AA or METAC to KL were applied to produce AKLs and CKLs with different characteristics. The produced AKLs and CKLs were used in single and dual systems to flocculate aluminum oxide in suspension. To assess the interaction of these lignin-based polymers with the aluminum oxide particles; the zeta potential, adsorption, and flocculation of the colloidal systems were evaluated comprehensively. The flocculation performance of the lignin-derived polymers was compared with that of the homopolymers of AA and METAC (PAA and PMETAC) and commercially used flocculants. In single polymer systems, among the anionic synthesized polymers and homopolymers, KL-A4 (an AKL) was the best flocculant for the aluminum oxide suspensions owing to its largest molecular weight (330 × 103 g/mol) and highest charge density (−4.2 mmol/g). Remarkably, when KL-A4 and KL-C4 (the CKL with the highest molecular weight and charge density) were used subsequently in a dual polymer system, a larger adsorbed mass and a more viscous adlayer were formed than those of single polymer systems on the surface of aluminum oxide particles. The synergy between KL-A4 and KL-C4 was even stronger than that between homopolymers, which led to more significant adsorption on the aluminum oxide surface and, consequently, more efficient flocculation, producing larger (22 μm) and stronger flocs, regardless of the agitation intensity used in the systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.