Abstract

AbstractA new strategy for particle synthesis is enabled by utilizing modern synthetic, polymer, and photochemical techniques to facilitate the synthesis of highly narrow–disperse multifunctional microspheres from visible‐light induced crosslinking of prepolymers in both a single and dual polymer system. The approach requires no stabilizers, bases, or initiators, and proceeds at ambient temperature to yield microspheres with a tunable size range (0.25–5 µm) in less than 4 h, depending largely on solvent composition, but also polymer concentration (2–10 mg mL−1), ratio, and irradiation intensity (3–20 W). Critically, the visible‐light induced dimerization reaction exploited herein enables simple functional particle syntheses via a single polymer system. Underpinned by an in‐depth kinetic analysis of the particle formation as well as a detailed small molecule study, the mechanism for particle formation is also elucidated. Importantly, inherent advantages of the system are exploited for surface functionalization of residual acrylate and hydroxyl groups (generating inherently fluorescent particles).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call