Abstract

The emergence of text-driven motion synthesis technique provides animators with great potential to create efficiently. However, in most cases, textual expressions only contain general and qualitative motion descriptions, while lack fine depiction and sufficient intensity, leading to the synthesized motions that either (a) semantically compliant but uncontrollable over specific pose details, or (b) even deviates from the provided descriptions, bringing animators with undesired cases. In this paper, we propose DiffKFC, a conditional diffusion model for text-driven motion synthesis with KeyFrames Collaborated, enabling realistic generation with collaborative and efficient dual-level control: coarse guidance at semantic level, with only few keyframes for direct and fine-grained depiction down to body posture level. Unlike existing inference-editing diffusion models that incorporate conditions without training, our conditional diffusion model is explicitly trained and can fully exploit correlations among texts, keyframes and the diffused target frames. To preserve the control capability of discrete and sparse keyframes, we customize dilated mask attention modules where only partial valid tokens participate in local-to-global attention, indicated by the dilated keyframe mask. Additionally, we develop a simple yet effective smoothness prior, which steers the generated frames towards seamless keyframe transitions at inference. Extensive experiments show that our model not only achieves state-of-the-art performance in terms of semantic fidelity, but more importantly, is able to satisfy animator requirements through fine-grained guidance without tedious labor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.