Abstract

Influenza neuraminidase (NA) is a major target for anti-influenza drugs. With an increasing number of viruses resistant to the anti-NA drug oseltamivir, functionally active recombinant NA is needed for screening novel anti-NA compounds. In this study, the secretable NA (sNA) head domain of influenza A/Vietnam/DT-036/05 (H5N1) virus was expressed successfully in human embryonic kidney (HEK-293T) cells and shown to be enzymatically active. The inclusion of a plasmid encoding nonstructural protein 1 (NS1) of influenza A/Puerto Rico/8/34 virus with the sNA plasmid in the cotransfection demonstrated an increase in H5N1 sNA expression by 7.4 fold. Subsequently, the sNA/NS1 cotransfection protocol in serum-free 293-F suspension cell culture was optimized to develop a rapid transient gene expression (TGE) system for expression of large amounts of H5N1 sNA. Under optimized conditions, NS1 enhanced H5N1 sNA expression by 4.2 fold. The resulting H5N1 sNA displayed comparable molecular weight, glycosylation, Km for MUNANA, and Ki for oseltamivir carboxylate to those of H5N1 NA on the virus surface. Taken together, the NS1-enhancing sNA expression strategy presented in this study could be used for rapid high-level expression of enzymatically active H5N1 sNA in suspension mammalian cells. This strategy may be applied for expression of sNA of other strains of influenza virus as well as the other recombinant proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.