Abstract

Despite its low energy storage efficiency (∼46%), silver niobate (AgNbO3) is considered as a promising lead-free antiferroelectric material due to its environmental advantages. Herein, we demonstrate that the energy storage efficiency of AgNbO3 ceramics can be enhanced by applying hydrostatic pressure. The results reveal that the hydrostatic pressure contributed to the decline of remanent polarization (Pr) and the switching hysteresis ΔE. In addition, the externally applied pressure improved the reverse switching field (EA). This indicates an enhanced antiferroelectricity, benefiting the enhancement of energy storage properties of AgNbO3 ceramics. Under the pressure of 400 MPa, the as-prepared AgNbO3 ceramics exhibited an energy storage efficiency (η) of 56% and a recoverable energy storage density (Wrec) of 1.3 J/cm3 under the electric field of 13 kV/mm, corresponding to an enhancement of 47% and 30%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.