Abstract
As emerging materials for capacitor applications, antiferroelectric (AFE) materials possess high energy storage density. AFE single crystals are conducive to studying the physical mechanism of AFE response. However, the preparation of AFE single crystals is a huge and long-standing challenge. Herein, we report the effect of Na/La codoping on the energy storage properties and phase transition of Pb(Lu1/2Nb1/2)O3 (PLN) AFE single crystals. An enhanced recoverable energy storage density of 4.81 J/cm3 with a high energy efficiency of 82.36% is obtained, which is much larger than that of the PbZrO3- and PLN-based AFE crystals. Two superlattice reflections, which stem from the A-site Pb2+ ions and the ordered B-site ions, are identified by X-ray diffraction and selected-area electron diffraction. The domain structures demonstrated a high temperature stability of the AFE phase. A secondary ferroelectric phase transition is induced after codoping, resulting in a sharp improvement of polarization (12.5 μC/cm2), which contributes to the enormous enhancement of energy storage density. This multiphase transition is explained using the modified Ginzburg-Landau-Devonshire phenomenology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.