Abstract
With an aim to improve the total efficiency of a D-3He nuclear fusion direct energy conversion system, a secondary electron direct energy converter (SEDEC) is proposed. The incident high-energy protons in an SEDEC penetrate a large number of foil electrodes aligned in the direction of the proton beam, and emitted secondary electrons are recovered. The results of the initial experiments showed that most of the secondary electrons flowed into anteroposterior electrodes and did not arrive at the electron collector located alongside and perpendicular to the direction of the proton beam. A magnetic field was introduced to push the electrons toward the electron collector, but it was not effective for energy recovery. This technical note analyzes the trajectories of electrons in the presence of the magnetic field and proposes and examines a revised arrangement of permanent magnets. The arrangement of the magnets along one side of the proton beam greatly improved the energy recovery; however, the recovery level was lower than that without magnets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.