Abstract

Electroresistance in ultrathin Hf0.5Zr0.5O2 (HZO) films is pivotal toward the implementation of hafnia-based ferroelectrics in electronics. Here, we show that the electroresistance yield and endurance of large capacitors (∼314 µm2) of epitaxial HZO films only 2.2 nm thick grown on SrTiO3 or GdScO3 can be improved using 1 nm SrTiO3 capping layers. It is argued that the main role of the capping layer is to minimize charge transport along grain boundaries, and, thus, a similar strategy can be explored in polycrystalline films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.