Abstract

Conductive composites-coated fabric sensors are favorable sensing elements for wearable applications. However, rheology of composites ingredients has been causing inaccuracy due to high hysteresis and low instantaneity in real-time measurements. To address this problem, a composites-coated fabric-based strain sensor was fabricated and studied. A physical pretreatment scheme was designed to produce cracked surface morphology on the conductive composites film, yielding a stable conductive network. Results showed that this scheme can significantly lower the electrical hysteresis of the sensors by about 35% and effectively reduce electrical and mechanical relaxation, hence notably improved electromechanical resilience of the sensors. It is also found that the linear strain-resistance property of the sensors was largely retained after pretreatment. Sensing mechanism of the cracked sensors was further derived to understand the results. Through all the observations and application prospect demonstrated by two sensing belts, it is suggested that cracking can be considered to improve sensing performance for other coated fabric flexible sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.