Abstract
Pairing of large strain response and high d33 with high Tc in (K0.5Na0.5)NbO3-based materials is of high significance in practical applications for piezoelectric actuators. Here, we report remarkable enhancement in the electromechanical properties for (1-x)(K0.52Na0.48) (Nb0.95Sb0.05)O3-xCaZrO3 (KNNS-xCZ) lead-free ceramics through the construction of a rhombohedral (R)-tetragonal (T) phase boundary. We investigated the correlation between the composition-driven phase boundary and resulting ferroelectric, piezoelectric, and strain properties in KNNS-xCZ ceramics. The KNNS-xCZ ceramics with x=0.02 exhibited a large strain response of 0.23% while keeping a relatively large d33 of 237pC/N, which was mainly ascribed to the coexistence of R and T phases confirmed by the XRD and dielectric results. It was found that pairing of large strain response and high d33 in KNN-based materials was achieved. As a consequence, we believe that this study opens the possibility to achieve high-performance lead-free electromechanical compounds for piezoelectric actuators applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.