Abstract
The study utilized a simple and cost-effective approach to improve the photoelectrochemical (PEC) water-splitting performance of various materials, including reduced graphene oxide (rGO), tin oxide nanostructures (SnO2), and rGO/SnO2 composites. The composites examined were rS15, containing 15 mg of rGO and 45 mg of SnO2, and rS5, with 5 mg of rGO and 50 mg of SnO2, tested in a sodium hydroxide (NaOH) electrolyte. Notably, the rS5 electrode showed a significant increase in PEC efficiency in 0.1 M NaOH, achieving a peak photocurrent density of 13.24 mA cm-2 under illumination, which was seven times higher than that of pristine rGO nanostructures. This enhancement was attributed to the synergistic effects of the heterostructure, which reduced resistance and minimized charge recombination, thereby maximizing the catalytic activity across the various electrochemical applications. Furthermore, the rS5 anode demonstrated improved Tafel parameters, indicating faster reaction kinetics and lower overpotential for efficient current generation. These results highlight the potential for optimizing nanostructures to significantly enhance PEC performance, paving the way for advancements in sustainable water-splitting technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.