Abstract
Advanced two dimensional nanostructures with distinctive physicochemical properties, excellent surface chemistry, and adjustable interlayer band-gap enhances the electrochemical activity in the field of supercapacitors. This work focuses on the formation of the hybrid nanocomposite of Bismuthene-Multiwall carbon nanotube nanocomposite (Biene-MWCNT NC) to enhance the electrochemical activity. Cyclic Voltammetry (CV) analysis of Biene-MWCNT NC reveals the enhanced specific capacity of 323.65 C/g at the scan rate of 10 mV/s. In addition, the Trasatti method shows the charge accumulation mechanism which delivering the total, inner, and outer capacity of 662.3, 601.02, and 61.23 C/g respectively together with the capacity and diffusion contribution percentages of 90.76 % and 9.24 % correspondingly. Furthermore, Biene-MWCNT//MWCNT hybrid supercapacitor (HSC) demonstrates the elevated specific capacity of 113.85 C/g at the constant current density of 0.5 A/g and the outstanding energy density of about 35.5 Wh/kg corresponds to high power density of 11250 W/kg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.