Abstract

Highly efficient nondoped phosphorescent organic light-emitting devices (NPOLEDs) with triplet multiple quantum well structures are fabricated by using 4,4′-N,N′-dicarbazole-biphenyl and an iridium(III) complex as the potential barrier layer and the potential well layer/light-emitting layer, respectively. Remarkably, such NPOLED with an optimized device configuration achieves reduced current efficiency roll-off, which slightly decreases from its peak value of 31.5 cd/A at 19.8 mA/cm2 to 29.2 cd/A at 100 mA/cm2. We attribute this improvement to the efficient triplet exciton confinement effect and the suppression of triplet-triplet annihilation which occurs via single-step long range (Förster-type) energy transfer between excited molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.