Abstract
Cas12a (Cpf1), a Class 2 Type V CRISPR/Cas nuclease, has several unique attributes for genome editing and may provide a valuable alternative to Cas9. However, a low editing efficiency due to temperature sensitivity and insufficient cleavage activity of the Cas12a nuclease are major obstacles to its broad application. In this report, we generated two variants, ttAsCas12 Ultra and ttLbCas12a Ultra harboring three (E174R, M537R, and F870L) or two (D156R and E795L) mutations, respectively, by combining the mutations from the temperature-tolerant variants ttAsCas12a (E174R) and ttLbCas12a (D156R), and those from the highly active variants AsCas12a Ultra (M537R and F870L) and LbCas12a Ultra (E795L). We compared editing efficiencies of the five resulting Cas12a variants (LbCas12a, ttLbCas12a, ttLbCas12a Ultra, AsCas12a Ultra, and ttAsCas12 Ultra) at six target sites of four genes in Arabidopsis (Arabidopsis thaliana). The variant ttLbCas12a Ultra, harboring the D156R and E795L mutations, exhibited the highest editing efficiency of all variants tested in Arabidopsis and can be used to generate homozygous or biallelic mutants in a single generation in Arabidopsis plants grown at 22 °C. In addition, optimization of ttLbCas12a Ultra, by varying nuclear localization signal sequences and codon usage, further greatly improved editing efficiency. Collectively, our results indicate that ttLbCas12a Ultra is a valuable alternative to Cas9 for editing genes or promoters in Arabidopsis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have